Interpretations of Frequency Domain Analyses of Neural Entrainment: Periodicity, Fundamental Frequency, and Harmonics

نویسندگان

  • Hong Zhou
  • Lucia Melloni
  • David Poeppel
  • Nai Ding
چکیده

Brain activity can follow the rhythms of dynamic sensory stimuli, such as speech and music, a phenomenon called neural entrainment. It has been hypothesized that low-frequency neural entrainment in the neural delta and theta bands provides a potential mechanism to represent and integrate temporal information. Low-frequency neural entrainment is often studied using periodically changing stimuli and is analyzed in the frequency domain using the Fourier analysis. The Fourier analysis decomposes a periodic signal into harmonically related sinusoids. However, it is not intuitive how these harmonically related components are related to the response waveform. Here, we explain the interpretation of response harmonics, with a special focus on very low-frequency neural entrainment near 1 Hz. It is illustrated why neural responses repeating at f Hz do not necessarily generate any neural response at f Hz in the Fourier spectrum. A strong neural response at f Hz indicates that the time scales of the neural response waveform within each cycle match the time scales of the stimulus rhythm. Therefore, neural entrainment at very low frequency implies not only that the neural response repeats at f Hz but also that each period of the neural response is a slow wave matching the time scale of a f Hz sinusoid.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detection of Auditory Periodicity: Comparing Behavioral Data and a Decision Algorithm Based on a Neural Net

We present psychophysical data on fast auditory periodicity detection in the millisecond range (temporal pitch) that rule out a simple first-order inter-spike interval model. We then present a neural sequence learner that examines fast spike patterns as they are supposed to occur with periodic auditory signals and measures the degree of their regularity. The output of the neural net is evaluate...

متن کامل

Neural correlates of the pitch of complex tones. II. Pitch shift, pitch ambiguity, phase invariance, pitch circularity, rate pitch, and the dominance region for pitch.

1. The neural correlates of low pitches produced by complex tones were studied by analyzing temporal discharge patterns of auditory nerve fibers in Dial-anesthetized cats. In the previous paper it was observed that, for harmonic stimuli, the most frequent interspike interval present in the population of auditory nerve fibers always corresponded to the perceived pitch (predominant interval hypot...

متن کامل

Accurate Short-term Analysis of the Fundamental Frequency and the Harmonics-to-noise Ratio of a Sampled Sound

We present a straightforward and robust algorithm for periodicity detection, working in the lag (autocorrelation) domain. When it is tested for periodic signals and for signals with additive noise or jitter, it proves to be several orders of magnitude more accurate than the methods commonly used for speech analysis. This makes our method capable of measuring harmonics-to-noise ratios in the lag...

متن کامل

Neural Entrainment to the Rhythmic Structure of Music

The neural resonance theory of musical meter explains musical beat tracking as the result of entrainment of neural oscillations to the beat frequency and its higher harmonics. This theory has gained empirical support from experiments using simple, abstract stimuli. However, to date there has been no empirical evidence for a role of neural entrainment in the perception of the beat of ecologicall...

متن کامل

The Measurement of Low Frequency Magnetic Field of Two Kinds of GSM900 Mobile Phone

Introduction:  The  use  of  mobile  communication  systems  has  dramatically  increased  over  the  past  decade. Although many studies have been performed to determine the effect of radio frequency (RF) but  less attention has been paid to the possible biological impact of exposure to extremely low frequency  (ELF) components.   The objective of this study is two folds. One is to design the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2016